def GetPrimes(n):
"""
Get all primes up to n.
Use sieve of Eratosthenes to generate all primes less or equal to n. For
example, given n = 10, then returns a list of primes [2, 3, 5, 7].
Args:
n: An integer representing the upper bound.
Returns:
A list containing all primes <= n in the increasing order.
"""
sqrt_n = int(math.sqrt(n))
visited = [False] * (n + 1)
for i in range(2, sqrt_n + 1):
if not visited[i]:
for j in range(i * i, n + 1, i):
visited[j] = True
primes = []
for i in range(2, n + 1):
if not visited[i]:
primes.append(i)
return primes
2019年11月5日 星期二
[Python] GetPrimes code snippet
GetPrimes code snippet: (naive)
2019年11月1日 星期五
[Python] ModInverse code snippet
ModInverse code snippet: (depends on ExtendedGcd())
def ModInverse(a, m):
"""
Modular multiplicative inverse algorithm.
Computes modular multiplicative inverse of an integer a is an integer x such
that the product ax is congruent to 1 with respect to the modulus m.
Args:
a: An integer.
m: An integer representing modulus.
Returns:
An integer x satisfying ax = 1 (mod m). Otherwise throw an exception if
there is no such integer x.
"""
g, x, y = ExtendedGcd(a, m)
if g != 1:
raise Exception('modular inverse does not exist')
return x % m
[Python] ExtendedGcd code snippet
ExtendedGcd code snippet:
def ExtendedGcd(a, b):
"""
Extended Euclidean algorithm.
Computes, in addition to the greatest common divisor of integers a and b,
also the coefficients of Bezout's identity, which are integers x and y such
that a x + b y = gcd(a, b).
Args:
a: An integer.
b: An integer.
Returns:
A tuple (g, x, y) satisfying a x + b y = g.
"""
if a == 0:
return (b, 0, 1)
else:
g, y, x = ExtendedGcd(b % a, a)
return (g, x - (b // a) * y, y)
[Python] Factorize code snippet
Factorize code snippet: (depends on GetPrimes())
def Factorize(n, primes):
"""
Factorize n by primes.
For every prime p <= sqrt(n), we examine whether n is divided by p. If so, we
compute the maximal integer value e satisfying that n is divided by p^e and n
is not divide by p^{e + 1}.
The factorization is represented by a dict(). It means that all prime factors
of n are not in order. Consider use collections.OrderedDict() instead of
dict() to keep the order of prime factors.
Args:
n: An integer representing a number to be factorized.
primes: An integer list representing all possible prime factors <= sqrt(n).
Returns:
A dictionary where the key representing a prime factor p and the
corresponding value representing the maximal integer value e satisfying that
n is divided by p^e and n is not divide by p^{e + 1}.
"""
factorization = {}
d = n
for prime in primes:
if prime * prime > d:
break
e = 0
while d % prime == 0:
d //= prime
e += 1
if e > 0:
factorization[prime] = e
if d > 1:
factorization[d] = 1
if primes[-1] * primes[-1] < d:
raise ValueError
return factorization
[Python] GetPrimes code snippet
GetPrimes code snippet:
def GetPrimes(n):
"""
Get all primes up to n.
Use sieve of Eratosthenes to generate all primes less or equal to n. For
example, given n = 10, then returns a list of primes [2, 3, 5, 7].
Args:
n: An integer representing the upper bound.
Returns:
A list containing all primes <= n in the increasing order.
"""
sqrt_n = int(math.sqrt(n))
visited = [False] * (n + 1)
for i in range(2, sqrt_n + 1):
if not visited[i]:
for j in range(i * i, n + 1, i):
visited[j] = True
primes = []
for i in range(2, n + 1):
if not visited[i]:
primes.append(i)
return primes
[Python] ModExponentiation code snippet
ModExponentiation code snippet:
def ModExponentiation(b, e, m):
"""
Modular exponentiation algorithm of time complexity = O(log(e)).
Args:
b: An integer representing the base.
e: An integer representing the exponent.
m: An integer representing modulus.
Returns:
An integer c = b^e (mod m).
"""
if e == 0:
return 1
y = b
output = 1
while e > 0:
if e & 1 == 1:
output = (output * y) % m
y = (y * y) % m
e >>= 1
return output
訂閱:
意見 (Atom)