2011年10月3日 星期一

實分析的集合論「個人心得」

近代數字最重要的工具之一就是集合論 (set theory)。末學曾念過 Charles C. Pinter, Set Theory,曾為書裡細節著迷,甚至花許多心思研究 1+1=2 怎麼證明,基於幾個簡單假設 (Axiom of Infinity: There exist a successor set),1+1=2 的確可以證明,但這不是「末學要的」集合論。

任何知識都一樣,有需求才有動力學習。我們到底要什麼?

末學要的集合論是可用在實分析 (real analysis) 的集合論。究竟集合論哪些內容對實分析有用處?根據 H. L. Royden, Real Analysis, 3ed 的建議,集合論至少包括:
  • 證明論述能力 (這也算集合論?末學認為如此)
  • The well-ordering principle
  • Mathematical induction
  • (Generalized) Principle of recursive definition
  • Axiom of choice
以上是末學認為重要的內容,大家若不同意末學所言,歡迎提出自己的版本。



證明論述能力

何謂「證明論述能力」?狹義的說,就是完成 Real Analysis 教科書習題的能力。舉兩個例子來說:

1. (Royden, Real Analysis, Problems 1.1.4) Show that the well-ordering principle implies the principle of mathematical induction. [Consider the set { n is a natural number : P(n) is false }.]

證明之前,我們得先克服英文障礙,我們寧可卡在數學,而不是英文。英文是說:請證明 the well-ordering principle => mathematical induction.

了解英文語意之後,接著是計算習題。末學認為證明跟計算分不開。那麼我們開始來計算:
Consider the set S = { n is a natural number : P(n) is false }, where P(n) is a proposition defined for each natural number n.
卡住,趕緊來google一下這個提示一點也不自然,我們可以回到原點重新思考。回想 mathematical induction:{ P(1) & P(n) => P(n+1) } => (n)P(n),內容包括兩句敘述:
  • A: { P(1) & P(n) => P(n+1) }
  • B: (n)P(n)
我們可以思考 proof by contradiction (reductio ad absurdum): 利用 A and (not B) 來導出矛盾。(not B) 翻成白話就是 there is a n which P(n) is false,若能計算到此,提示看來十分自然。繼續計算:
If S is not empty, by the well-ordering principle there is a least element m in S. m cannot be 1 since P(1) is true. Also, m-1 is in S too since P(m-1) => P(m), which is absurd since m is not a least element.
整個計算就是這麼一回事。

2. (Royden, Real Analysis, Problems 1.1.5) Use mathematical induction to establish the well-ordering principle. [Given a set S of positive integers, let P(n) be the proposition 'If n is in S, then S has a least element'.]

英文是說:請證明 mathematical induction => the well-ordering principle. 一樣,提示也不太自然,但提示的確很有用。若 (n)P(n),則 well-ordering principle 自動成立,因為 every nonempty subset of N contains a natural number.
Given a nonempty set S of positive integers, let P(n) be the proposition 'If n is in S, then S has a least element'. P(1) is true since 1 is the least element in N. Assume that P(1), P(2), ..., and P(n) are all true. Suppose n+1 is in S. If n+1 is a least element of S, we are done. If not, there is an element m < n+1 in S. m is between 1 and n. By mathematical assumption, S has a least element. So P(1), P(2), ..., and P(n) => P(n+1). By mathematical induction, (n)P(n), or the well-ordering principle. 
這裡用變形的 mathematical induction,與原形式等價,這點末學念高中的時候有證。



寫了那麼多的計算,看起來很厲害。事實上,數學的直覺應該將 the well-ordering principle 與 mathematical induction 視為理所當然只要證明 trivial 寫夠多,你就出師了。



Mathematical Induction

標準形式是:{ P(1) & P(n) => P(n+1) } => (n)P(n)。使用時機:不明,必須試了才知道能不能用,末學通常會這麼操作:
  1. 計算簡單情況:P(1), P(2), P(3)...
  2. 找出 P(n) 與 P(n+1) 關係
  3. 利用 mathematical induction 美化證明
美化證明也是一門學問。

沒有留言:

張貼留言